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Matrix divisors
A.Weil,1938; A.Grothendieck, 1957; A.Tyurin, 1964-66

Set-up:
Riemann surface Σ, semisimple Lie algebra g/C, a faithful
g-module V , the corresponding Chevalley group G = G((z))
over C((z)).

(C((·))-Laurent expansions, C[[·]]-Taylor expansions), C(·) - rational
functions)

Given a covering U = {U} of Σ, a Chech 0-cochain with coeffs
in G((z)) is a correspondence U → AU , AU ∈ G((z)) being a
Laurent expansion centered at a unique point γ ∈ U.

Two cochains A and B are equivalent (A ∼ B) if ∃C – a cochain
with coeffs in G[[z]] s.t. A = CB.

Matrix divisors = coChains/ ∼



Matrix divisors and holomorphic vector bundles

Given a covering Σ ⊂ (
⋃
γ∈Γ

Uγ)
⋃

U∞, take a Chech 0-cochain

A = {Aγ (γ ∈ Γ), A∞} with coeffs. in G((z)). Then the cocycle

∂A|Uγ∩U∞ = AγA−1
∞

gives a holomorphic vector bundle with the fiber V .

Vice versa, given a holomorphic
vector bundle, its gluing functions
always split as gγ,∞ = AγA−1

∞
where Aγ can be continued
meromorphically into Uγ , and A∞
to U∞, thus giving a cochain.
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Canonical form of a matrix divisor

z – local parameter on Σ, h ∈ L
∗

V

zh ∈ End(V ) : zhv = zµ(h)v for v ∈ Vµ (i.e. zh – diagonal matrix)

Fact: max torus T ⊂ G consists of zh, s.t. h ∈ L
∗

V .

Def. The chamber A+ ⊂ T is generated by zh,
h ∈ L

∗

V ∩Weil chamber

THEOREM (ON ELEMENTARY DIVISORS):
1) G = KA+K where K = G[[z]] (Cartan decomposition);
2) A+-component of the decomposition is defined up to T ∩K .

Corollary: up to equivalence Ψγ = zhγKγ (Kγ ∈ K ).

hγ , γ ∈ Γ – discrete invariants of the matrix divisor,
Kγ , γ ∈ Γ give moduli.



Classification problem

Given a divisor Ψ its section is a local meromorphic V -valued
function f s.t. Ψf is holomorphic in the domain of definition.

Problem: classify matrix divisors with the same discrete
invariants Γ,h and the same sheaf of sections

THEOREM: 1◦ The moduli space of matrix divisors is a
homogeneous spaceMΓ,h = K × . . .× K︸ ︷︷ ︸

|Γ| times

/
∏
γ∈Γ

K 0
γ where

K 0
γ ⊂ K is the stationary subgroup of the divisor zhγ .

2◦ For its tangent space at the unit we have

TeMΓ,h =
⊕

γ∈Γ, α∈R+ :α(hγ)>0

(
C[[z]]/zα(hγ)C[[z]]

)
xα.



Dimension of a moduli space

Let Nγ be a number of parameters at a γ ∈ Γ. It follows by
previous theorem that

Nγ =
∑

α∈R+ :α(hγ)>0

α(hγ) =
∑
s>0

s dim gγs

where gs = {X ∈ g | (ad hγ)X = sX}. Below we assume hγ to
be dual to a simple root, say αγ , and (α : αγ) to denote
multiplicity of αγ in a root α. Then

Nγ =
∑
α>0

(α : αγ).

Regard to γ ∈ Γ as to free parameters, and identify matrix
divisors related by common conjugation by a constant element
of G. Denote byMh the corresponding moduli space. Then

dimMh =
∑
γ∈Γ

(1 +Nγ)− dim g.



When dimMh = (dim g)(g − 1) ?

Assume, hγ is independent of γ. Then it also holds for Nγ :

Nγ = N , ∀γ ∈ Γ.

It follows that dimMh = (1 +N )|Γ| − dim g, hence we need

(1 +N )|Γ| = (dim g)g.

Since g and the Riemann surf. are absolutely independent,
generically 1 +N is not divisible by g. Assume ∃r ∈ Z+ s.t.
|Γ| = rg. Then

(1 +N )r = dim g.

The only general reason for the last is that

r = rank g, N = Coxeter number.

Our question reads now: When N = Coxeter number ?



How to calculate N ? (examples)

An−1: r r r r r r. . .
α1 α2 αn−1 αn

Positive roots: αi + . . .+ αj (1 ≤ i < j ≤ n).

Roots of height 1 in α1: α1 + . . .+ αj (1 < j ≤ n). Hence
dim g1 = n − 1, g2 is absend. N = dim g1 = n − 1 .

G2: s s�Hα1 α2
, grading by multiplicity of α2

Positive roots: α1, α2, α1 + α2,2α1 + α2,3α1 + α2︸ ︷︷ ︸,3α1 + 2α2︸ ︷︷ ︸
g1 g2

dim g1 = 4, dim g2 = 1, N = dim g1 + 2 dim g2 = 6 .



Relation between the number of parameters at a point
and the Coxeter number for classical Lie algebras

dim g1 dim g2 dim g1 + 2 dim g2 Coxeter number
An−1 (gl(n)) n − 1 0 n − 1 –
An−1 (sl(n)) n − 1 0 n − 1 n

Bn 2n − 1 0 2n − 1 2n
Cn 2n − 2 1 2n 2n
Dn 2n − 2 0 2n − 2 2n − 2
G2 4 1 6 6

Comments: 1) N = dim g1 + dim g2 in all lines;
2) h is dual to the shortest terminal root α1 of the Dynkin diagr.;
3) N = Coxeter number for An−1(gl(n)), Cn, Dn, G2, and does
not hold for An−1(sl(n)), Bn.



Conformal extensions

G – a simple Lie group/C, Z is its center.

CG := G ⊗Z C∗

Let g = Lie(G), g̃ = Lie(CG), then

g̃ = g⊗ 1⊕ 1⊗ C ' g⊕ C.

G Z
SL(n) Zn

SO(2n + 1) Z2
Sp(2n) Z2
SO(2n) Z2

Grading: h operates on g̃ as ad h ⊗ 1 (on g⊗ 1 only).

Hence
1⊗ C ⊂ g̃1.

Natural CG-module: V ⊗ V1 where V is the standard
G-module, V1 ' C, (g ⊗ λ)(v ⊗ v1) = gv ⊗ λ|Z|v1.



Relation between the number of parameters at a point
and the Coxeter number for conformal extensions

g̃1 dim g̃1 dim g2 dim g̃1 + 2 dim g2 Coxeter number
An−1 g1 ⊕ C n 0 n n
Bn g1 ⊕ C 2n 0 2n 2n
Cn g1 2n − 2 1 2n 2n
Dn g1 2n − 2 0 2n − 2 2n − 2
G2 g1 4 1 6 6

Comments: 1) conformal extensions are considered for An−1
and Bn only;
2) By An−1 we mean sl(n) here;



Questions

Do conformal extensions appear as a particular case of
some general mathematical construction?
What could be a general reason for the relation∑

s

s dim gs = Coxeter number ?

What do the above considered matrix divisors have in
common? Why do we need a conformal extension in some
cases, and do not in the others, in order to obtain the
"correct" dimension?

Conjecture (speculation): the above matrix divisors are
distinguished by the property that the corresponding
holomorphic vector bundles are stable.



Matrix divisors and flag configurations

Recall, given a matrix divisor Ψ, by its section we mean a
meromorphic V -valued function f on U s.t. Ψf is holomorphic in
a neighborhood of any γ ∈ Γ ∩ U.

For any γ and a local coordinate z : z(γ) = 0 let

f (z) =
∞∑

i=−k

fiz i .

Let Fi be the subspace in V constituted by the components fi of
all solutions (f−k , f−k+1, . . . , fm−1) to the system Ψf = 0. Then

F−k ⊆ F−k+1 ⊆ . . . ⊆ Fm−1 ⊆ V .

Flag configuration: the set of such flags F γ , γ ∈ Γ

COROLLARY: f is a section iff fi ∈ F γ
i for ∀γ ∈ Γ.



Matrix divisors and∞-dimensional Lie algebras

DEFINITION: Given a matrix divisor Ψ we call the Lie algebra
of meromorphic g-valued functions on Σ leaving invariant its
sheaf of local sections by endomorphism algebra of Ψ, and
denote it by End(Ψ).

In terms of flag configurations:
Let g = Lie(G). Given a flag F consider the following filtration
of g. Remind that V is a g-module. For every i consider a
subspace g̃i ⊆ g such that g̃iFj ⊆ Fj+i for every j . Then
g̃i ⊆ g̃i+1 because g̃iFj ⊆ Fj+i ⊆ Fj+i+1, and [gi , gk ] ⊆ gi+k .

LEMMA: End(Ψ) is the subspace of the space of all g-valued
meromorphic functions on Σ satisfying the following
requirement for every γ ∈ Γ. Let L be such a function, and
L(z) =

∑
Liz i be its Laurent expansion at a γ ∈ Γ. Then

Li ∈ g̃i , ∀i .



Example: Lax operator algebras

Assume Ψ to be in diagonal form: Ψγ = zhγ , g = gγ−k ⊕ . . .⊕ gγk
be the Z-grading corresponding to hγ , g̃j =

⊕
i≤j

gi be the

corresponding filtration: g̃−k ⊂ . . . ⊂ g̃k−1 ⊂ g̃k = g.

Let L be a meromorphic g-valued function s.t. in a

neighborhood of any γ ∈ Γ L(z) =
∞∑

i=1
Lγi z i , and

Lγi ∈ g̃γi , ∀γ ∈ Γ ;
L is holomorphic outside Γ and one more fixed finite set
in Σ.

L is referred to as Lax operator algebra.



Matrix divisors and Hitchin systems

Consider filtrations . . . ⊂ gγi ⊂ gγi+1 ⊂ . . . as flags in g.

COROLLARY: Any L ∈ End(Ψ) is a section of the divisor Ad Ψ.

Given a divisor D = (ω) where ω is a holomorphic 1-form on Σ,
consider the sections L ∈ End(Ψ) holomorphic everywhere
except at the divisor D. They are called Higgs fields.

Let L be a Higgs field, χ be an invariant polynomial on g. Then
χ(L) is a meromorphic function on Σ holomorphic everywhere
except at D. Scalar invariants of such functions (say, residues
at the points in D, or coefficients of expansions over certain
base) are called Hitchin Hamiltonians. This story has different
continuations to Separation of Variables, Lax operator
approach, Hamiltonian mechanics, and inverse scattering
method.



Thank you!
Congratulations to Nikolai!


